RESULTS OF MATHEMATICAL MODELING OF A
HEAT-CONDUCTION PROCESS
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Using a special regularizing algorithm, the induction quenching of steel samples is mathemati-
cally modeled, allowing optimal conditions for the process to be chosen.

1. The modern level of development of computational techniques is such as to allow apparatus state sen-
sors to be replaced by program sensors in many cases of technological processes, which extends the possibil-
ites of solving control problems for industrial equipment. To this end, mathematical models which reflect the
basic features of the physics of the process are being developed; the purpose of the program is to output cer-
tain characteristics of the result. However, the formulation of the control problem assumes that the function
really controlling the process is unknown and must be determined from the target characteristics. In thiscase
some inverse problem is an element of the mathematical model, and the creation of a program sensor requires
the use of Tikhonov {1} regularizing algorithms.

These questions will be considered in the present work for the example of modeling the inductional quench-
ing of long cylindrical samples, as a result of which certain minute effects inthe behavior of the process output
characteristics may be observed.

Note that intrinsically inverse problems in heat-conduction theory have been considered in a sufficiently
broad circle of works, for example, [2-5], where their correct formulation and regularizing algorithms were
developed. However, in those cases where an inverse problem is an element of a modeling problem, the ques-
tion of the economy of the algorithm arises, and the evolutionary character of the heat.conduction processesal-
lows, as will be shown below, special algorithms of this type to be developed [6].

2. In the induction quenching of steel samples by high-frequency currents, there are three stages of the
process: a) fast heating to a temperature of ~1000°C; b) more or less prolonged isothermal holding; ¢) fast
cooling by a fluid flow immersing the surface. For the quenching of long cylindrical samples, the desired be-
havior of the surface temperature is the target characteristic for heating in 2 longitudinal magnetic field (Fig.
1). However, it cannot be specified by means of boundary conditions in formulating the problem, not only be-
cause the temperature, strictly speaking, is not realized, but mainly because volume heating is used, and the
source density depends on the really controlling function y(t), the magnitude of the magnetic field at the surface
of the sample, which is proportional to the current intensity in the induction loop for a small gap, and so itself
must be determined from the specified ¢(t). Thus, modeling the first two stages involves the simultaneous de-
termination of the temperature field and the function y(t).

In this case the temperature field is described by a system of Maxwell and heat-conduction equations;
these are nonlinear, since the thermal and electromagnetic characteristics of the material are also functions
of the temperature. Their behavior on heating is known [7]. Methods of solving the boundary problems for such
systems on a computer without any simplifying assumptions with regard to the behavior of the coefficients are
well developed [8, 9], and the general algorithm for solving this system on any time segment [t(!), t(2)] for
arbitrary initial and physically correct boundary conditions

~k(u)—§7u ~R: V(u)» (1)

where ¥(u) a specified function is assumed fo be known. For each y(t), the temperature field is determined
everywhere, including the sample surface: u(R, t) = v[t, x].
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Fig. 1. Sample surface tempera-
ture for heating ty and isother-
mal holding ty.

The corresponding algorithm was realized in [9] within the framework of the two-dimensional model (r,
t) and the experimentally verified (for fast processes) assumption of negligible heat transfer to the sample sur-
face; ¥(u)=0 on heating.

The following algorithm of successive conditional minimization of the norm of the deviation of v[t, x] from
the specified ¢(t) is then realized. The complete-heating time interval [0, T) is divided into parts: [tg.;, tg],
s=1, 2,...,n (t;=0/*and, correspondingly,t x(t) is replaced by the piecewise constant function {y4}. For suf-
ficiently large n, this approximation is as accurate as could be wished, and { s} may be found from a sequence
of variational problems, eéach of which is written for only one variable

(2)
min (x — Xs-1)% ¥6Xos={x:lv,[t, x1— @ s <62,
ts
where Jolt, x]— c'f)]lf 35 {u,[t, x —c’ﬁ(t)}2dt; 6 is a measure of the deviation from the "desired" ¢(t) permitted in

L

the given interval; vg[t, x] is determined by the direct problem described above for the segment [tg_,, t5] with
the field-continuity condition at the point t5_; (initial). This algorithm is similar to the dynamic-programming
scheme for control problems [10], accurate up to terms in the operator v[t, x] represented in this case by a
system of partial differential operators, the difference being that here only a direct approach to variational
search (from 0 to T) is used, and stability is achieved as a result of the introduction of a sequence of local reg-
ulators. This determines its economy.

The proposed algorithm RY is substantiated as Tikhonov conditionally regularizing. It has been estab-
lished, for example, that under conditions corresponding to the considered "direct" problem (in particular, in
view of the maximum principle for the heat-conduction equations), and provided the specified ¢(t) corresponds
to the unique "accurate" controlling function {Xs} then for any measure of the error &: llv[t, x]— (p(t)lllo,T]Sé
there exists a sequence {65} (5=6/n) such that the sequence in Eq. (2) has a solution {x} and max[yg—xg!— 0
as 6 —~0.

0
p
ficiently sharp maximum, whichare characteristic of the control problems considered, if the transition from
rapid rise in temperature through the Curie point to maintenance of the temperature at a constant level is taken
into account.

In [6], it was shown on models that R}, is efficient in the class of piecewise-smooth functions with a suf-

Obviously, the temperature field in each subsequent [tg_;, tg] is calculated simultaneously with g, and is
fixed as soon as Xg has been found with the required accuracy.

In part I of Fig. 2, results calculated for the controlling function x(t), and simultaneously the temperature
field, using R?, are showr in comparison with experimental data for one set of quenching conditions. The cal-
culations assume n =177, 6% = 1072

The series of these, and subsequent, calculations provides the basis for conclusions regarding the target
specification of the considered technological process (Sec. 4).

*This division does not coincide with the difference-grid step used in numerical solution of the direct problem

[9].
+This replacement does not necessarily mean approximation of x(t), since discrete control in the induction is
possible.

718



7 . V/4

x 0% u w107
40
51800 R
a
A\ ———b
\ et C
——d
J 1400 >
Y
A
7 N \
N \\ =
! mm———
1/ 40 &’ t

Fig. 2. Temperature field u (°C), magnetic field
at surface y (A/mm), and convective-heat-trans-
fer coefficient H (keal/m-h - deg) for heatingand
holding (I) and cooling (II): a) calculation; b) ex-
periment; c) x; d) H; 1) surface; 2) r=16.5mm;
3) center of sample, St. 40; R = 24 mm, ty = 27
sec, th = 28 sec, uyg = 870°C, f= 2500 Hz.

3. To develop a model of the process at the fast-cooling stage, when the temperature dependence of the
material's thermal characteristics obtained in slow processes does not correspond to the physical reality [11],
and various hypotheses regarding the heat-transfer law at the surface are possible (film or bubble boiling, con-
vective heat transfer {12]), a mathematical experiment was performed on a computer. For each of the two pos-

sible hypotheses regarding the behavior of k(u) and cy(u), the algorithm Rg was used to solve the inverse prob-

lem for H*(t), which characterizes the heat-transfer law at the surface. Additional information was specified
here, in the form of the real surface temperatures: ¢(t) obtained experimentally [13] with a certain error .
The heat-transfer condition in Eq. (1) was written for ¥(u) =H(u) (u—u,), where u,; is the temperature of the sur-
rounding medium (~ 25°C), and since the surface temperature is known the following relation was established:
H(u) = H*(t). Obviously, the sequence of problems in Eq. (2) may also be written in the case with the substitu-
tion xg—~Hg, but the operator v[t, H] is then defined by a homogeneous nonlinear heat-conduction equation.

As a result of the experiment, it was found possible to choose a phenomenological model of the cooling
process within the framework of which the thermal characteristics remain constant in layers heated up to and
above the austenitic-transformation temperature, right up to the structural transformation to martensite [11].
Then convective heat transfer with the medium occurs at the surface, which is physically verified at large
velocities of the cooling liquid bathing the sample. In part II of Fig. 2, the dependence H*(t) obtained for the
same parameters of the process as above is shown, together with the temperature field and a comparison with
experiment.

Note that the other hypothesis, that the thermal characteristics in all the layers are the same as in heat-
ing, although it gives some "smooth" dependence H*(t) differing from a constant, leads to sharp divergence of
the temperature field from the results of physical experiment.

The computer mathematical experiment, based on the use of a Tikhonov regularizing algorithm for the
solution of the corresponding inverse problem, allows the construction of the quenching model to be improved.

4. The program calculated within the framework of the model developed above may serve as the state-
characteristic sensor of the object of a technological process, specifically, the temperature field and the con-
trolling magnetic field of the inductor. With sufficient provision of the process with computational techniques,
this sensor may serve as the object of the dynamic equation of heating under quenching.

On the other hand, treating the data on the temperature field in dynamic conditions allows definite effi-
ciency characteristics of the process to be obtained. These characteristics will be taken fo be the calcination
depth (the thickness of the surface layer) Al with a specified i-percent martensite content and the "effective
hardness" of the sample [14] 6 (the statistical moment for the torsional forces). Each will be regarded as a
function of the holding time for a specified time of rapid heating and various values of the rate of surface cool-
ing (different Hp): Al= Al(ty), 6= 6(ty). Since the phase-state diagrams of carbon steel are known [15], the dis-
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Fig. 3. Thickness of semimartensite structure AL, mm (i = 50%); 1) Hy=
5000 keal/m-h-deg; 2) 12,000; 3) 40,000; 100,000; St. 45; R = 20 mm;
tgy =4 sec; ug=880°C; f=2400 Hz.

Fig. 4. Effective hardness of sample: 1) Hy,= 5000 kcal/m.h-.deg; 2)
1200; 3) 100,000; St. 45; R =20 mm; ty =4 sec; uy = 880°C; £=2400Hz.

tribution of the percentage austenite content over the sample cross section at the end of heating may be found
from the known temperature field at this time. In turn, knowing the cooling rate of each sample layer at any
moment of time, it is possible, using the thermokinetic supercooled-austenite decay curves (C-shaped curves
{16]), to determine the percentage martensite content in each layer of the sample as a result of cooling for each
set of parameters characterizing the prevailing conditions, and thereby to find A(t,). Since the corresponding
treatment can be completely algorithmized and, hence, may be automated on a computer, this program serves
as the sensor for the quenching efficiency index.

One of the nomograms obtained for Ai(th) when i=50% for different H, and a certain set of other param-
eters of the sample and the quenching conditions is shown in Fig. 3. The effects observed in Fig. 3 are that: a)
there exists a limiting calcination depth with rise in holding time, so that increase in the latter, which facili-
tates through heating of the sample, does not lead to increase in quenched-layer thickness: on surface cooling,
the heat flux internal to the surface, which rises with increase in heating depth, reduces the cooling rate in the
inner layer of the sample; b) there exists a maximum value of Ai(th) which is reached at relatively short hold-
ing times. This is because the above-mentioned physical process "competes" with the process of increase in
heating depth, which rises with rise in tj, [6]. The nomograms obtained give a quantitative estimate of this ef-
fect, and serve as the object of the increase in efficiency of the technological process of quenching.

In Fig. 4, nomograms are shown for 6(ty) for the same parameters of the process. These nomograms are
obtained as a consequence of the preceding, since the static moment in uniquely established from the hardness
distribution over the cross section, and the latter depends on the percentage content of different phases in each
layer, determined in the preceding state of the analysis. The shift in the maximum to the right on the curves
shown occurs because the infernal heat fluxes which impede the growth in quenched-layer thickness also facili-
tates a smoother distribution of martensite structure over the layer (decrease in "curvature" of the hardness
curves). Estimation of the position of the maximum or the value of t;, at which the required value of 8 is ob-
tained, 6y < Omax. as derived by programming methods, is also an aim of economizing the technological process.
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KINETICS OF THE REMOVAL OF LIQUID FROM CAPILLARY-
POROUS BODIES IN A FLUIDIZED BED UNDER
NONISOTHERMAL CONDITIONS

E. N. Prozorov UDC 66.015.23.936.8

A theory of mass transfer in capillary-porous bodies is proposed which allows for thermogradi-
ent transfer of a bound substance in liquid form. The results obtained are used to calculate the
process of drying of ceramic articles in a fluidized bed.

Existing methods of calculating processes of drying of capillary-porous bodies under isothermal and non-
isothermal conditions are based mainly on analytical solutions of the system of differential equations of heat
and mass transfer known from the phenomenological theory of irreversible processes [1, 2]. The main obstacle
to the wide use of these equations is the considerable nonlinearity of the problem- the dependence of the kinetic
coefficients appearing in them on the concentration of the bound substance and the temperature {3-5]. Under
isothermal drying conditions (in the case of bodies of small size), calculations with allowance for the dependence
am = £(u, t) are made by zonal methods [4]. In the presence of a temperature gradient within the material being
dried, the number of criteria determining the kinetics of the process grows considerably [6], and it becomes
impossible to use the zonal method of calculation. In such cases one artificially separates the heat- and mass~
exchange processes and allows for the influence of the temperature field on the kinetics of the mass transfer
using functions obtained from experiment for the relation between the volumetric-mean concentration and tem-
perature [7], which are subsequently used in calculations of transfer processes in systems having a solid phase
under quasi~isothermal conditions. However, numerous experimental data give evidence of temperature gradi-
ents which exert considerable influence on the kinetics of the drying process [8-10].

Moreover, it should be noted that a phenomenological examination of the stated problem does not allow
one to characterize the fluxes of the bound substance in a porous body.
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